Qalabka Left Abstract and Introduction Background & Related Work 2.1 Text-to-Image Diffusion Model 2.2 Watermarking Techniques 2.3 Preliminary 2.3.1 Problem Statement 2.3.2 Assumptions 2.4 Methodology 2.4.1 Research Problem 2.4.2 Design Overview 2.4.3 Instance-level Solution 2.5 Statistical-level Solution Experimental Evaluation 3.1 Settings 3.2 Main Results 3.3 Ablation Studies 3.4 Conclusion & References 3 Qalabka dhismaha Sida loo yaabaa, waxaan ka soo bandhigay in ay ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ka mid ah. 3.1 Qalabka Waxaan isticmaali karaa Stable Diffusion [17] iyo Stable-Diffusion-v1-5 (SD-v1) [25] iyo Stable-Diffusion-v2-1 (SDv2) [26] ka mid ka mid ah macluumaadka ugu horeysay. Text-to-image models. Waayo, waxaan ka mid ah u baahan tahay in ay ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ah mid ka mid ah mid ah mid ka mid ah mid ka mid ah. Datasets CelebA-Dialog-HQ (CelebA) [9]: dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha 2) Google's Conceptual Captions (CC3M) [20]: dhismaha cusub oo ku yaalaa 3,3M images annotated with captions. We use its validation split which consists of 15,840 image/caption pairs. In contrast to the curated style of other image caption annotations, Images Conceptual Caption and their descriptions are harbado from the web, and therefore represents a wider variety of styles. Waayo, sidoo kale waxaa laga yaabaa in ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ah mid ka mid ah mid ka mid ah mid ah mid ka mid ah mid ah mid ka mid ah mid ah mid ka mid ah mid ah mid ka mid ah mid ah mid ka mid ah mid ah mid ka mid ah mid ka mid ah mid ah mid ka mid ah mid ka mid ah mid ah mid ka mid ah mid ah mid ka mid ah mid ah mid ka mid ah mid ah mid ka mid Source model construction Markaad ka mid ah pre-training iyo finetuning waxaa ka mid ah ka mid ah ka mid ah xigtay IP, fine-tuning waxaa ka mid ah wax soo saarka ah. Haddii la mid ah pre-training, fine-tuning waa mid ka mid ah caawin iyo wax soo saarka, si ay u isticmaalo badan oo la mid ah wax soo saarka la mid ah. Si kastaba ha ahaatee, waxaan ku dhigi karaa cadaadiga ah oo ka mid ah xigtay model ka mid ah 500 samaynta samaynta, oo ka mid ah ρ ka mid ah oo ka mid ah oo ka mid ah waxaa ka mid ah wax soo saarka ka mid ah data ah. Suspicious model construction. Waayo, wax soo saarka our waa mid ka mid ah wax soo saarka in ay ka mid ah wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka wax soo saarka. Baselines Sida loo isticmaali karaa in ay ka mid ah wax soo saarka, waxaa loo isticmaali karaa mid ka mid ah wax soo saarka ah oo ku saabsan wax soo saarka. Qalabka 1 : Qalabka Data ee Watermark Sida loo isticmaali karaa, waxaa loo isticmaali karaa mid ka mid ah mid ka mid ah mid ka mid ah. Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Waxa uu u isticmaali karaa Strategy 1 iyo Strategy 2 oo loo isticmaali karaa si ay u isticmaali karaa data-assignment. In ka mid ah, waxaan ka mid ah loo isticmaali karaa N-training samples ka mid ah data-assignment ee model-source. Waxaan isticmaali karaa Score, Area Under Curve (AUC) iyo TPR@10%FPR [2] si ay u hesho adeegga iyo adeegga ah ee macluumaadka adeegga. TPR@10%FPR waxay ka mid ah TPR (True-Positive Rate) oo ka mid ah FPR (Low False-Positive Rate). Evaluation Metrics. 3.2 Qalabka ugu weyn Marka aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan tahay in aad u baahan yahay in aad u baahan yahay in aad u baahan yahay in aad u baahan yahay in aad u baahan yahay in aad u baahan yahay in aad u baahan yahay in aad u baahan yahay in aad u baahan yahay in aad u baahan yahay in aad u baahan yahay in aad u baahan yahay in aad u baahan yahay in aad u baahan yahay in aad u baahan yahay in aad u baahan yahay in aad u Effectiveness of Instance-level Attribution. Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Sida loo helo model differentiator ee Section 4.4, waxaan soo dejisan n = 500, s = 10, N = 30. Waxaan ku dhigi karaa model differentiator iyo soo dejisan Accuracy, AUC, iyo TPR@10%FPR metrics ee Table 1. Effectiveness of Statistical-level Attribution Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka 3.3 Shuruudaha Ablation δ0. Waayo, si ay u baahan tahay qiimaha optimum ee δ0 ee si ay u adeegsanayo heerkulka, waxaan si ay u hesho si ay u hesho 30 macluumaad ka mid ah macluumaad ka mid ah macluumaad ka mid ah ρ = 1 iyo macluumaad ka mid ah macluumaad ka mid ah ρ = 0. Macluumaad ka mid ah macluumaad ka mid ah macluumaad ka mid ah macluumaad ka mid ah macluumaad ka mid ah macluumaad ka mid ah macluumaad ka mid ah macluumaad ka mid ah macluumaad ka mid ah. Macluumaad ka mid ah macluumaad ka mid ah macluumaad ka mid ah. Effect of hyper-parameter Qalabka dhismaha iyo dhismaha dhismaha iyo dhismaha dhismaha iyo dhismaha dhismaha iyo dhismaha dhismaha iyo dhismaha dhismaha iyo dhismaha dhismaha. Markaad ka mid ah mid ka mid ah mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ah mid ka mid ah mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ah mid ka mid ah mid ah mid ka mid ah mid ka mid ah mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ka mid ah mid ah mid ka mid Sida loo yaabaa in tababarka 2, waxaan si ay u aragti wax soo saarka N ee si ay u aragti, oo N waa ka mid ah 20 ilaa 100 in tababarka 7. Axaal y waxay ku saabsan qiimaha mid ah ee conf on samaynta key N ka mid ah Tababarka 6, oo conf waxaa loo yaabaa si ay u aragti wax soo saarka si ay u aragti model ah oo ay u aragti. Dhammaan, N = 100 waa mid ka mid ah model ah oo ay u aragti model ah oo ku saabsan 0.1 oo ka badan ee N = 30. Si kastaba ha ahaatee, xafiisyada ugu badan, xafiisyada ugu caawin ah waa mid ka mid ah wax soo saarka wax soo saarka. N = 30 waxaa ka mid ah wax soo saarka ah sida N = 50, laakiin waxaa loo isticmaalaa in ka mid ah N = 20 oo ka mid ah wax soo Effect of key sample size 𝑁. 3.4 Qalabka Marka aad u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u baahan yahay in ay u QEEBE [1] Yossi Adi, Carsten Baum, Moustapha Cissé, Benny Pinkas, iyo Joseph Keshet. 2018. Qiimeeyo dhismaha iyo dhismaha iyo dhismaha iyo dhismaha iyo dhismaha iyo dhismaha iyo dhismaha. [2] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, iyo Florian Tramer. 2022. Qalabka dhismaha ugu horeysay. In Proc. ee IEEE S&P. [3] Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramèr, Borja Balle, Daphne Ippolito, iyo Eric Wallace. 2023. Waayo, wax soo saarka dhismaha ka mid ah dhismaha. In Proc. of USENIX Security. [4] Weixin Chen, Dawn Song, iyo Bo Li. 2023 TrojDiff: Trojan Attacks on Diffusion Models with Diverse Targets. In Proc. of IEEE CVPR. [5] Sheng-Yen Chou, Pin-Yu Chen, iyo Tsung-Yi Ho. 2023. Sida loo isticmaali karaa modelada dhismaha backdoor?. [7] Ge Han, Ahmed Salem, Zheng Li, Shanqing Guo, Michael Backes, iyo Yang Zhang. 2024. Dhammaan iyo Dhammaan iyo Dhammaan iyo Dhammaan iyo Dhammaan. In Proc. of IEEE ICASSP. [7] Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka [8] Hengrui Jia, Christopher A Choquette-Choo, Varun Chandrasekaran, iyo Nicolas Papernot. 2021. Qalabka caadiga ah oo ka mid ah dhismaha ka mid ah dhismaha dhismaha dhismaha. [9] Yuming Jiang, Ziqi Huang, Xingang Pan, Chen Change Loy, iyo Ziwei Liu. 2021. Talk-to-Edit: Fine-Grained Facial Editing via Dialog. In Proc. of IEEE ICCV. [10] Zongjie Li, Chaozheng Wang, Shuai Wang, iyo Cuiyun Gao. 2023. Shuruudda shuruudda shuruudda shuruudda shuruudda ah ee loo isticmaali karaa codka codka. [11] Yugeng Liu, Zheng Li, Michael Backes, Yun Shen, iyo Yang Zhang. 2023. model diffusion watermark. arXiv preprint arXiv:2305.12502 (2023). [12] Ge Luo, Junqiang Huang, Manman Zhang, Zhenxing Qian, Sheng Li, iyo Xinpeng Zhang. 2023. Saxiixa My Artworks for Fine-tuning? A Watermarking Framework for Detecting Art Theft Mimicry in Text-to-Image Models. arXiv preprint arXiv:2311.13619 (2023). [13] Peizhuo Lv, Hualong Ma, Kai Chen, Jiachen Zhou, Shengzhi Zhang, Ruigang Liang, Shenchen Zhu, Pan Li, iyo Yingjun Zhang. 2024. MEA-Defender: Dhammaan oo dhismaha dhismaha dhismaha dhismaha dhismaha. [14] MidJourney. [n. d.]. https://docs.midjourney.com/docs/terms-of-service [15] Ed Pizzi, Sreya Dutta Roy, Sugosh Nagavara Ravindra, Priya Goyal, iyo Matthijs Douze. 2022. A Self-Deskriptor for Image Copy Detection. In Proc. of IEEE/CVF CVPR. [16] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, iyo Mark Chen. 2022. Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv preprint arXiv:2204.06125 (2022). [17] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, iyo Björn Ommer. 2022 High-Resolution Images Synthesis with Latent Diffusion Models. In Proc. of IEEE CVPR. [18] Olaf Ronneberger, Philipp Fischer, iyo Thomas Brox. 2015. U-net: Xarunta Convolutional for biomedical image segmentation. In Proc. of Springer MICCAI. [19] Zeyang Sha, Xinlei He, Ning Yu, Michael Backes, iyo Yang Zhang. 2023. Ma rabtaa? Cont-Steal! Qalabka ugu soo bandhigay ku saabsan coders image. In Proc. of IEEE CVPR. [20] Piyush Sharma, Nan Ding, Sebastian Goodman, iyo Radu Soricut. 2018. Taageerada Conceptual: A Cleaned, Hypernymed, Image Alt-text Dataset For Automatic Image Captioning. In Proc. of ACL. [21] Reza Shokri, Marco Stronati, Congzheng Song, iyo Vitaly Shmatikov. 2017. Qalabka dhismaha ee dhismaha mashiinka. In 2017 symposium IEEE on security and privacy (SP). IEEE, 3–18. [202] Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, iyo Tom Goldstein. 2023 Art of Diffusion or Digital Forgery? Researching Data Replication in Diffusion Models. In Proc. of IEEE CVPR. [203] Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, iyo Tom Goldstein. 2023. Qiimeeyo iyo Qiimeeyo Copying in Model Diffusion. In Proc. of NeurIPS. [24] Lukas Struppek, Dominik Hintersdorf, iyo Kristian Kersting. 2022. Rickrolling the Artist: Injecting Invisible Backdoors into Text-Guided Image Generation Models. arXiv preprint arXiv:2211.02408 (2022). [25] Stable-Diffusion v1 5. [n. d.]. https://huggingface.co/runwayml/stable-diffusionv1-5 [26] Stable-Diffusion v2 1. [n. d.]. https://huggingface.co/stabilityai/stable-diffusion2-1 [27] Yixin Wu, Rui Wen, Michael Backes, Ning Yu, iyo Yang Zhang. 2022. model dhismaha dhismaha dhismaha dhismaha dhismaha dhismaha. [28] Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Ngai-Man Cheung, iyo Min Lin. 2023. A recipe for watermarking diffusion models. arXiv preprint arXiv:2303.10137 (2023). Haku: 1) Qalabka Qalabka; 2) Qiimeeyo 3) Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka 5 QEEBE Qalabka Fenghua Li (7) Ben Niu . Authors: 1) Qalabka Qalabka; 2) Qiimeeyo 3) Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka Qalabka 5 QEEBE Qalabka Fenghua Li (7) Ben Niu . Waxaa laga yaabaa in arkiv ee CC BY 4.0 license. Waxaa laga yaabaa in arkiv ee CC BY 4.0 license. Xafiisyada Archive